Strengthening, Modification and Repair Solutions for Offshore Assets

The experts in life extension solutions for ageing or damaged structures
Why assets may need strengthening, modifying or repairing

There are many reasons why an asset may need to undergo strengthening, modification or repair intervention. Findings from routine inspections can uncover damage or fabrication defects requiring repairs. Alternatively, the need for additional conductors, or life extension solutions to enable a field to continue production after its intended design life could result in a requirement for strengthening or modification.

Common issues faced by offshore structures:
- Corrosion of members and/or joints
- Fatigue damage
- Dented members
- Need for increased fatigue life
- Life extension requirements

Design code updates
The lessons learned and better understanding of environmental loads of decades-old offshore structures has shown that design codes have needed updating. For example, the wave loads which offshore installations need to withstand have increased - dramatically in some cases.

Other loading parameters and marine growth allowances are better understood leading to design-code updates.

Design error
Missed critical loads or load combinations such as overlooked transportation fatigue, incorrect structural modelling or poor detailing are examples of design error.

Referencing structural designs from other regions can also lead to design errors, with primary loadings different between, for example, the Gulf of Mexico where hurricanes are prevalent versus the North Sea where fatigue due to wave loadings is the priority.

Fabrication defect
Accurate conversion of a design from drawing to reality is critical. Errors can occur when for example welds are poorly made or are misaligned, steel properties are out-of-specification or construction access is tight. All of these can contribute to over-stressed members and joints.

Damage
Jackets can be damaged during loadout, transportation and installation, causing weakened welds or dented members.

Once in situ, the structure is susceptible to objects that are accidentally dropped overboard, causing damage to the jacket on their way to the seabed. Ship impacts can typically result in bent or buckled members, or crack developments at member/joint connections.

Fatigue
Fatigue damage typically takes the form of cracks at the end of members where they frame into joints. The design of early jackets was heavily dependent on experience in the Gulf of Mexico. In the North Sea, these designs are unable to withstand the 6 million wave loadings per year. Many structures, or some component of them, have required fatigue damage repairs, or have needed to be strengthened to prevent anticipated damage.

Corrosion
General excessive corrosion can result from an under-designed or failed cathodic protection system, but localised corrosion can occur for example due to galvanic corrosion as is the case when carbon steel caissons house stainless steel pump or strainer components. In either cases, thinning or perforations of the carbon steel can occur.
Why assets may need strengthening, modifying or repairing

www.foundocean.com

YOUR EXPERIENCED SMR DESIGN PARTNER

FoundOcean is experienced in designing an extensive catalogue of SMR techniques and fully understands their merits and challenges, as well as their effect on an asset’s overall structural integrity. We understand that every structure is unique and that the correct choice of SMR technique is crucial to providing a cost effective and reliable long-term solution.

Offshore work, particularly subsea work, can be expensive and risky, and our key objective is to ensure ease of installation and minimum offshore working time, with safety at all times.

FoundOcean offers either our full turnkey solution that includes structural analysis through to the offshore installation of the solution, or alternatively, one of several individual modules depending on your specific requirements.

Modules includes:
• Structural analyses
• Identification and selection of optimum SMR technique(s)
• FEED and detailed design of SMR scheme
• Certification Authority approvals
• Construction support
• Offshore execution/supervision

These specialist skills are a result of our active involvement in developing SMR designs through R&D programmes, and many years of global experience in SMR schemes.

GROUT FILLING
Grouting a member offers the advantage of not increasing member diameter and therefore wave loading.

Filling a tubular member with grout may be carried out for one or more of the following reasons:
• to increase axial compressive (squash) strength of the member
• to improve overall member stability and resistance to buckling
• to improve strength or reduce the stress concentration factor (SCF) at a tubular joint chord.

Member grout filling
Where members may have suffered local buckling, dents or bends during installation or once in-situ by a vessel or dropped object, filling the member with grout provides it with incremental compression loading capacity. This technique is also used to increase the capacity of members in vulnerable areas (e.g. adjacent to boat landings) to resist local damage.

Joint grout filling
Filling joints with grout leads to reduced chord wall deformations and results in increased fatigue resistance.

Pile-Leg annulus grout filling
Filling the annulus between a pile and leg with grout forms a double skin member with increased strength and fatigue resistance at incoming brace connections.

Member grout filling
Where members may have suffered local buckling, dents or bends during installation or once in-situ by a vessel or dropped object, filling the member with grout provides it with incremental compression loading capacity. This technique is also used to increase the capacity of members in vulnerable areas (e.g. adjacent to boat landings) to resist local damage.

Joint grout filling
Filling joints with grout leads to reduced chord wall deformations and results in increased fatigue resistance.

Pile-Leg annulus grout filling
Filling the annulus between a pile and leg with grout forms a double skin member with increased strength and fatigue resistance at incoming brace connections.
CLAMPING

There are many types of structural clamp, each type having its own merits according to the intended application it is designed to solve. Some are designed specifically to carry load whereas others are designed to provide stability. If a tubular member is dented or requires strengthening, there are a number of clamping options. A clamped connection is typically fabricated in two sections, split to accommodate installation around an existing member or joint.

Unstressed grouted connection

The annular space created by the clamp is filled with grout. Bolts are fully tightened prior to injection of grout into the annular space between the sleeve and the existing tubular member: the grout/steel interface is not therefore stressed.

Using grout allows for larger annular tolerances, along damaged or member imperfections, enabling even load transfer along the repair. The means of load transfer is via bond and interlock between the grout/steel interface. Although bond and interlock may be sufficient in certain conditions, it is often necessary to use a long connection, to generate sufficient load transfer capacity.

Stressed mechanical clamp

Stressed mechanical clamps provide a connection between two concentric tubulars. This type of clamp relies on the friction capacity of the interface between the two tubulars for load transfer. The outer saddles are stressed together to generate a force normal to the friction surface. This is created through long bolts which apply load to the saddle halves that produce friction grip onto the base member.

Stressed grouted clamp

The stressed grouted clamp is a hybrid of the unstressed grouted connection and stressed mechanical clamp. Cementitious material is placed into the annular space between the tubulars and once it reaches a predefined strength an external force is applied by tightening the long studbolts holding the casings together, stressing the grout. Base member obstructions such as weld beads or small doubler plates can be accommodated within the grout annulus.

The strength of a stressed grouted clamp comes from a combination of plain pipe bond and grout/steel friction that develops from compressive radial stress at the grout-to-tubular member interface.

Stressed grouted clamps exhibit high strength-to-length ratio and combined with its ability to absorb significant tolerances, make this repair technique very popular.

Stressed elastomer-lined clamp

Much like the stressed grouted clamp in design, however the inside of the clamp saddle is lined with an elastomer material, creating the friction-based connection. The long studbolts holding the casings together are tightened, stressing the connection.

The strength of an elastomer-lined clamp is significantly lower than that of a stressed grouted clamp because of the low stiffness of elastomer lining compared to that of steel.
WELDING AND WELD IMPROVEMENT
Fatigue damage can result in cracking, fracturing and ultimately disconnection. Welding is one solution and can be performed offshore in wet or dry conditions.

Dry Welding
Depending on access and orientation, dry welding offers the ability to carry out high quality welds because of the increased control over environmental conditions. Certified welder divers perform dry welding from within a sealed, underwater chamber that is specially fabricated to fit around the damaged area.

Wet Welding
Wet welding can be carried out quickly, as an underwater chamber is not required. However, the quality and integrity of wet welds has been questioned and is not accepted in all jurisdictions.

Weld hammer peening
A hammer tool is used to plastically deform the surface layer of the steel weld metal, leaving a compressive residual stress at the surface which allows improved fatigue lives to be realised.

Remedial grinding
This technique is used to arrest fatigue cracks by excavating a smooth-shaped trench in the cracked metal using a grinding disc or burr grinding tool. Subsequent re-welding or encapsulation by a clamp may be required.

MECHANICAL SYSTEMS
Bolting
Bolted techniques are used in conjunction with other solutions, such as flange connections or clamp solutions.

Swaging
Swaging is used to connect two tubulars by crimping the two together. The outer tubular is fabricated with ridges or grooves on its inside edge. The inner tube is expanded and deformed plastically into the grooves to form the connection.

MEMBER REMOVAL
Removing the member is a viable option should it be damaged beyond repair and it can be proven that the remainder of the structure is within code requirements without the member.

SUITABILITY OF SMR SOLUTIONS

<table>
<thead>
<tr>
<th>Technique</th>
<th>Fatigue Crack</th>
<th>Non-fatigue Crack</th>
<th>Corrosion</th>
<th>Inadequate Static Strength - Member</th>
<th>Inadequate Static Strength - Joint</th>
<th>Inadequate Fatigue Strength - High Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry welding</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Wet welding</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Remedial grinding</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Welding peening</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Unstressed grouted connection</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Stressed mechanical clamp</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Stressed grouted clamp</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Stressed elastomer-lined clamp</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Member grout filling</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>Y</td>
</tr>
<tr>
<td>Joint grout filling</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>Y</td>
</tr>
<tr>
<td>Pile-leg annulus grout filling</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Member removal</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
</tr>
<tr>
<td>Swaging</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* This table offers a rough guide only to the suitability of SMR techniques. Other factors will always need to be taken into consideration before selecting the optimum solution(s).
COMPARING SMR SOLUTIONS
Not all techniques work for all problems.

Once a range of possible SMR techniques have been identified these then have to be assessed relative to each other to determine the optimum solution for the project factors.

These graphs facilitate identification of common factors which should be considered when selecting possible SMR design solutions.

As experts in life extension solutions for ageing or damaged structures, FoundOcean considers these, amongst other factors, when advising clients on their options.

For further information about our full range of SMR solutions, visit www.foundocean.com or call us on +44 1628 567 000

Onshore Fabrication Costs

Offshore Installation Equipment

Offshore Installation Timescales
Europe
FoundOcean Ltd. Headquarters
Liston Exchange
Liston Court
Marlow
Buckinghamshire
SL7 1ER
United Kingdom
Tel: +44 1628 567 000

FoundOcean
World Trade Center City
Airport Bremen
Hermann-Köhl-Straße 7
28199, Bremen
Germany
Tel: +49 421 9601 250

Middle East
FoundOcean
14th Floor Gold Tower
Cluster I
Jumeirah Lakes Towers
Dubai
U.A.E. PO Box 487286
Tel: + 971 4 424 9100

Offshore Service Bases
Europe Livingstion, Scotland
Middle East Jebel Ali, United Arab Emirates
South East Asia Batam, Indonesia and Navi Mumbai, India
Americas Houston, Texas

Asia & Australasia
Ambico FoundOcean Grouting Services
#701-702, Shri Sai Corporate Park
Next to Polaris Tower
Opp. Laxmi Nagar Industrial Estate
Goregaon Link Road, Goregaon (W)
Mumbai 400 090
India
Tel: +91 22 2876 6641

IEV Group Sdn Bhd
Level 22
PJX-HM Shah Tower
No.16A Persiaran Barat
46050 Petaling Jaya
Selangor
Malaysia
Tel: +6 7931 9921

Tamboritha Consultants
32 Jessie Lee St,
Henderson 6166
Western Australia
Australia
Tel: + 61 8 6595 5200

Americas
FoundOcean, Inc.
11490 Westheimer
Suite 850
Houston
Texas, 77077
United States
Tel: +1 713 425 6326

About FoundOcean
FoundOcean is the world’s largest dedicated offshore construction grouting company with nearly 50 years’ experience of subsea grouting for oil and gas and offshore renewables construction firms.

FoundOcean also provides life extension solutions for offshore structures which include inspection, repair, and maintenance services, marine growth control products, fabric formwork grout bags, and pipeline/cable support and protection services.

And that’s why, to offshore installation contractors, FoundOcean is the subcontractor of choice to reduce their project risks.

www.foundocean.com